V3.2

blenderCAVE is a Scene Graph Editor for CAVE and Video Wall architectures, based
on the open source software blender (www.blender.org).

Features

- Tracked (adaptive) stereoscopy (2 Users)’.
- Spatial Sound (Ambisonic, Binaural 2 Users)?.

'embedded VRPN AP
?embedded OSC API and Max/MSP Sound Rendering Engine

Associated sources at http://blendercave.limsi.fr/doku.php

Table of Contents

I. Install (on each of the rendering NOAes)ccummmmm——————— 1
a) Download BlenderCave SOUICES....oummimmismsismssismsssssssssmssnnns 2
b) Download, patch and compile Blender SOUICeS.......ccummmmmmmmmmmmsmsssssssss 2
c) Setup BlenderCAVE working environment.......cmemmemmemmsmmssmsssssssssssssssssssssssss 3
d) Test BlenderCAVE INStall........cccoimmmmmmmmsmsmsmsmsmsssmmsssass 4

I1. Simple BlenderCAVE-iSAtioN.......ccuimmmemsmsmssssmssssssmssssssmsssassssns 5

II1. How To Use (with OSC, VRPN & associated APIS)cccommmmsmsmmsmsmssmsmsmssssmssssssnssssssssssssssns 6
D) BI@NAEICAVE AP ssnssssnssssnssssesssssssssssssssssnssssnsssnnns 6
T T4 o0 7. ¥ S 6
L) 0 1 000 < 8

R N 111 . 9
) 2 ¥ &0 01 O 9
b) XML CONfigUIatioN...cicismieismssssmssssmsasssnnsssnsassssnssssasss sanssssnsnssssnsss 11

I. Install (on each of the rendering nodes)

To ease further references, lets suppose you work in a folder named
~/BlenderWorkspace.
Any file creation, if not mentioned otherwise, takes place in that folder.

a) Download blenderCave sources
- Create a folder, here “blenderCave_svn”

From the LISMI, if you have a developer access:

- Open a terminal in this folder, type:

> svn co https://webdev.limsi.fr/svn/blenderCAVE/trunk
> svn up

Else:
Download the .zip file from https://github.com/jgascon/BlenderCave and extract its
content into your blenderCave_svn/ folder.

According to your needs and blenderCAVE project current & BC.py
state, you will have copied several unnecessary files in your [plender _cave
blenderCave_svn folder. As a standard user, you will want to B

| configurations
access the last release, as a developer the current trunk, etc.] 4

| patch
= README.txt

Delete the unnecessary versions (trunk or other releases) and [samples
make sure that blenderCave_svn/ folder looks like: G utils

Since blenderCAVE is a patched version of blender, you will need to download the
blender version corresponding to the blenderCAVE version related patch. You will find
the .patch file in blenderCave/patch folder (blender_revision_xxxxx.patch).

Remember it for b).

b) Download, patch and compile Blender sources

Fetch Blender sources
- Create a folder, here “blender_svn”
- Open a terminal in this folder, type:
> svn co https://svn.blender.org/svnroot/bf-blender/trunk/blender -rXXXXX
where XXXX is the desired blender sources revision number.
- Later, to refresh your sources, type
> svn up -rXXXXX

Patch blender sources

- Open a terminal in blender_svn/blender, type:

> patch -p0 < ../../blenderCave_svn/patch/ blender_revision_XXXXX.patch

- Later, if you want to reapply the patch:

> patch -p0 -R < ../../blenderCave_svn/patch/ blender_revision_XXXXX.patch

Install blender dependencies and compile blender (just patched) sources:
http://wiki.blender.org/index.php/Dev:Doc/Building_Blender

From here, your workspace should look like:

~/BlenderWorkspace
/blender_svn
/blender
(Nlib)
/build
/blenderCave_svn

/blender_cave

/patch

c) Setup blenderCAVE working environment

Notes:

- The locations of .xml, .py, ... scritps suggested hereafter are, if not mentioned
otherwise, not compulsory (yet coherent along the tutorial).

- Find further details about the different xml flags of the xml file in the ‘XML
configuration” Annex.

Files of interest:
- blenderCave_svn/configurations/<confName>.xml

Define several parameters that should be constant along the blenderCAVE runs
(screens names, positions, eyes separation, etc.) on a given architecture. Basic use
involves 2 of them, defining parameters for the standalone/debug mode and the full
Virtual Environment mode.

Store configuration scripts (.xml)
You want to keep these two files on your computer to be sure that you won’t erase them
at next update:

- Open a terminal in ~/.config
- Create a directory blenderCave_config
- Copy the content of blenderCave_svn/configurations
in ~/.config/blenderCave_config

Setup configuration scripts (.xml)

xml configuration script is closely related to your architecture. It contains:

- Rendering nodes names, screen positions, and graphic buffer configurations. OSC
and VRPN parameters, etc.

for a start, use the provided .xml configuration script main.xml. see XML configuration”
Annex to define your own script.

Note:

- BC.py needs to invoke the patched blenderplayer. If not defined in your aliases, you
should inform the complete path in the .xml (in the <system> flag).

- You can indicate a path for logs registration in the .xml (in the <system> flag).
blenderCAVE logs will be recorded for full Virtual Environment runs only (one for each
rendering node) else they will be printed in the terminal window used to launch BC.py

Simple Link to the BC.py script

blenderCAVE is launched through a terminal window, you thus need to be able to
access the BC.py script from any folder. Link the script blenderCave_svn/BC.py in one
of your $PATH defined folders:

MacOS & UNIX
- Open a terminal in ~/local/bin/, type:
> In —s ~/BlenderWorkspace/blenderCave_svn/BC.py

d) Test blenderCAVE Install
Launch
The BC.py script needs argument at first call (afterward, it stores last arguments until

told different). >BC.py —h to get args list.

- Open a terminal at blenderCave_svn/samples, type:

| > BC.py —s -f <sceneName>.blend --config-file <configurationFile.xmI> -c

| <configuration>

Where xxxxx.blend is one of the ready-to-use blend files included in sample folder (start
with BlenderCAVE.API.blend) configurationFile.xml is the .xml configuration file you
previously stored in ~/.config/blenderCave_config/ and configuration is one of them
configurations (alone, full, etc.) defined in it.

Quit
There are 3 main ways to properly quit blenderCAVE.
- In the terminal window you used to launch BC.py type

| > BC.py

(BC.py —s will stop the current scene and reload it)

or

- Press ESC while your mouse is over a slave node

or

- Associate a Keyboard Sensor (in Blender Logic Editor) to the python script

import blender_cave
blender_cave.quit(<string>)

Note: the <string> is here to be printed in terminal window for debug purpose.

Il. Simple blenderCAVE-isation

To adapt a .blend file for a run in blenderCAVE:

- Create a new blender file or fetch one of yours.

- Create a new embedded script (you may name it “blenderCave” for later reference).

- In this script, copy the 2 following lines and link it to an “Always” Sensor and activate
level triggering (pulse mode, freq 0):

import blender_cave
blender_cave.run()

- Copy the scene (.blend) onto each of the system’s rendering nodes.
- Launch the blenderCAVE using the BC.py launcher described in the previous section.

Note about Blender logic blocks in blenderCAVE:

- If your .blend file already contains logic blocks or any attached (embedded or not)
python scripts, they still should be available in its blenderCAVE version. You will
however have to place the mouse cursor above the ‘Master’ Node if you want your
interactions to be coherently dispatched to your Slaves Nodes, else only the « Mouse
cursor associated » Slave node will receive the information.

- Any automatic sensor (Always Sensors, eftc...) will be activated through all you nodes
(Master and Slaves). You can avoid this by using the ‘blender_cave.isMaster’ property,
False if the node is a Slave.

- An alternative consists into re-writing your interactions in the ‘processor” python script
described below.

lll. How To Use (with OSC, VRPN & associated APIs)

There are 2 kinds of interactions you may want in your scene:
- blender native interactions
- blenderCAVE interactions

The first work as they should, but for the Note in part Il.

Useful APls:

- Python (http.//docs.python.org/2/library/)

- blender (http.//www.blender.org/documentation/blender_python_api 2 _63_17/)

(check for more recent releases)

The last consist into sending/receiving external messages (VRPN or OSC), i.e. actions
in the real world that affect the virtual and vice versa.

b) blenderCAVE API

Once blender_cave module imported, the blenderCAVE methods may be used as any
other embedded functions.

import bge import blender_cave
scene = bge.logic.getCurrentScene() blender_cave.getAllUsers()

See embedded python scripts in samples/BlenderCave_API.blend.

a) VRPN API

VRPN is a protocol used in Virtual Reality to exchange data with external devices. See
http://www.cs.unc.edu/Research/vrpn/.

blenderCAVE behave like a VRPN client. At the other end, a VRPN server will host
different tracker or sensors that would be as many haptic arms, tracked stereoscopic
glasses or Wiimote devices. The server will associate a name to these device, along
with a variable “info” that holds the useful information about

the considered device.

In blenderCAVE, the receiving of VRPN messages and definition of associated methods
is done in the <blender_scene_name>.processor.py script attached to a scene (see

examples in the /samples folder). blenderCAVE works fine without any processor
script.

To be able to interact in your blenderCAVE scene with a VRPN compatible interface you
will have to:

i) Define the interface in your vprn.cfg script

i) Define the related processor method in the blenderCAVE .xml configuration
script

iii) Define the processor method in the <blender_scene_name>.processor.py script
attached to your blenderCAVE scene

Example with a Nintendo Wii Controller:

i) inyour vrpn.cfg file, add:

| vrpn_WiiMote WiiMote0 1001

ii) in the blenderCAVE .xml configuration script (e.g. single.xml), add:

<processor>
<vrpn>
<analog name="WiiMote0" host="<vrpnServer@>" processor_method="wiiAnalog" />
<button name="WiiMote0" host="<vrpnServer@>" processor_method="wiiButton"/>
</vrpn>
</processor>

(analog will receive accelerometer data from the WiiMote, button only the pressed button
states)

iii) in the <blend_file_name>.processor.py script (e.qg.
BlenderCave_API.processor.py), add:

def wiiAnalog(self, info):
print (“Analog from Wii through VPRN “, info)

def wiiButton(self, info):
print (‘Button from Wii through VPRN “, info)

Here, both functions will be executed whenever the VRPN server receives data from the
WiiMote (the wiiButton when your touch a button, the wiiAnalog when you move the
WiiMote).

c) OSC API

OSC is a protocol used to send / receive data through applications. See
http://opensoundcontrol.org/.

blenderCAVE includes a MaxMSP (http://cycling74.com/) Sound Rendering Engine
available at http://blendercave.limsi.fr/doku.php. It is however possible (and advised) to
make it work with any other OSC client and fathom it for other purposes.

While the OSC API allows to easily send OSC (UDP) flags, the MaxMSP associated
Sound Rendering Engine has been design to receive an process these flags.

Once you've opened the blenderCAVE_Sound_Rendering_Engine_vX.maxpat on the
OSC server as defined in the .xml configuration file

<processor>
<osc host="serverName' port='3819'/>
</processor>

and modified it to fit to your needs (spatializer, speakers mapping, microphone inputs,
etc.), the rest of the sound adding process takes place in blenderCAVE.

See samples/BlenderCave_OSC.blend and samples/BlenderCave_OSC_API.blend

LIMSI members, see http://wikivenise.limsi.fr/index.php/Open_Sound_Control

IV. Annex

a) OSC API

Output of BlenderCave_OSC_API.blend :

Global OSC methods:
Global OSC methods for sync. with OSC Sound Rendering Engine

global_OSC = blender_cave.getOSC().getGlobal()
- configuration():
Set the OSC client configuration (e.g. “ambisonic EVE”)
use: global_OSC.configuration(<string>)
0SC flag: /global configuration 'ambisonic EVE'
- mute():
Mute/Unmute global audio
use: global_OSC.mute(<bool>)
0SC flag: /global mute <1/0>
- reset():
Reset OSC client (used automatically when calling blender_cave.quit())
use: global_OSC.reset()
0SC flag: /global reset
- start():
Start/Stop gloabal Audio
use: global_OSC.start(<bool>)
0SC flag: /global start <1/0>
- volume():
Set global Volume
use: global_OSC.volume(<string>)
0SC flag: /global volume +<int> / -<int> (relative)
or /global volume %<int> (absolute)

Object OSC methods:
Object OSC methods for sync. with OSC Sound Rendering Engine

object_OSC = blender_cave.getOSC().getObject(<bge.types.KX_Gameobject>)
-loop():

Set loop on Object sound

use: object_0SC.loop(<bool>)

0SC flag: /object <ID> loop <1/0>
- mute():

Mute/Unmute Object audio

use: object_0SC.mute(<bool>)

0SC flag: /object <ID> mute <1/0>

- position():
set OSC Object position
use: object_OSC.position(<Mat4x4>)
0SC flag: /object <ID> position <float> (x16)
- sound():
Set Object sound
use: object_0SC.sound(<str>)
0SC flag: /object <ID> sound <str>
- start():
Set Object volume
use: object_OSC.start(<bool>)
0SC flag: flag: /object <ID> start <1/0>
- volume():
Set Object Volume
use: object_OSC.volume(<string>)
0SC flag: flag: /object <ID> volume +<int> / -<int> (relative)
or /object volume <ID> %<int> (absolute)

User OSC methods:
User OSC methods for sync. with OSC Sound Rendering Engine

user_OSC = blender_cave.getUserByName(<string>) where <string> is the user name

defined in you .xml file.
- brightness():
NOT DEFINED
- envelop():
NOT DEFINED
- heavyness():
NOT DEFINED
- hrtf():
NOT DEFINED
- livelyness():
NOT DEFINED
- mute():
Mute/Unmute User audio
use: user_0SC.mute(<bool>)
0SC flag: /user <ID> mute <1/0>
- name():
NOT DEFINED
- position():
set OSC User position
use: user_0SC.position(<Mat4x4>)
0SC flag: /user <ID> position <float> (x16)
- presence():
NOT DEFINED

- start():
Set User volume
use: user_0OSC.start(<bool>)
0SC flag: flag: /user <ID> start <1/0>
- volume():
Set User Volume
use: user_0SC.volume(<string>)
0SC flag: flag: /user <ID> volume +<int> / -<int> (relative)
or /user volume <ID> %<int> (absolute)

- warmth():
NOT DEFINED

ObjectUser OSC methods:
objectUser OSC methods for sync. with OSC Sound Rendering Engine

object_user_OSC = blender_cave.
- mute():
Mute/Unmute User audio
use: user_0SC.mute(<bool>)
0SC flag: /user <ID> mute <1/0>
- volume():
Set User Volume
use: user_0SC.volume(<string>)
0SC flag: flag: /user <ID> volume +<int> / -<int> (relative)
or /user volume <ID> %<int> (absolute)

b) XML configuration

Here above, different architectures are exposed. Associated .xml configuration files can
be found in /configuration.

Configuration 1:
2 Computers (Bob and Alice) / 2 Screens (Flat) / no VRPN server / OSC Sound

Rendering Engine on Chopin.

Configuration 2:

1 Computers (Bob) / 2 Screens (Stereoscopic) / VRPN server on Bob-VRPN / OSC
Sound Rendering Engine on Chopin.

Configuration 3:
7 Computers (Bob-N) / 5 Screens / VRPN server on Bob-VRPN / OSC server on
Chopin.

-

Notes:

- screen name is “console” or “main”, the former being used for control screen not part
of the rendering cluster.

- player options defines blenderplayer options (type >blenderplayer ? in terminal if
need be).

- graphic buffer link graphic buffer to a given user/eye.

- corner (x,y,z) coordinates of screen corners.

