BlenderVR: Open-source Framework for Interactive and Immersive VR

Brian F.G. Katz* Dalai Q. Felinto

Damien Touraine

David Poirier-Quinot Patrick Bourdot

LIMSI-CNRS, Campus Universitaire d’'Orsay, Orsay, France

ABSTRACT

BlenderVR is an open-source project framework for interactive and
immersive applications based on an extension of the Blender Game
Engine to Virtual Reality applications. BlenderVR is a generaliza-
tion of the BlenderCAVE project, accounting for alternate platforms
(e.g., HMD, video-walls). The goal is to provide a flexible and easy
to use framework for the creation of VR applications for various
platforms, making use of the existing power of the BGE’s graphics
rendering and physics engine. Compatible with 3 major Operating
Systems, BlenderVR has been developed by VR researchers with
support from the Blender Community. BlenderVR currently han-
dles multi-screen/multi-user tracked stereoscopic rendering through
efficient low-level master/slave synchronization process with mul-
timodal interactions via OSC and VRPN protocols.

Index Terms: H.5.1 [Multimedia Information Systems]: Arti-
ficial, augmented, and virtual realities; 1.3.2 [Graphics Systems]:
Distributed/network graphics;

1 INTRODUCTION

We present here the current state of development of the BlenderVR
project.! BlenderVR is a generalization of the previous Blender-
CAVE and BlenderCAVE3D-s projects [7, 6]. BlenderVR is prin-
cipally a scene graph editor based on the well established Open-
source Blender? and Blender Game Engine (BGE) [3] software.
Blender is a multi-platform open source 3D creation content soft-
ware with enough functionalities to create photorealistic pictures,
high quality animations and, most of all, video games. Blender
based games exploit the BGE real-time rendering engine which
handles a multitude of physical interactions through the imple-
mented Bullet Physics Library while general game logic may be
defined through blocks and/or embedded python scripts. Gather-
ing users for more than a decade, Blender now boasts a large sup-
port community, a dedicated professional networkand several scene
repositories where one may find plenty of reusable material.

2 MAIN FEATURES

BlenderVR, a patched version of the core Blender software, adds
additional functionalities key to VR applications, while benefiting
from the basic BGE architecture, interface, and user community.
The BlenderVR code project is accessible via GitHub? and collab-
orators are welcome. The project website hosts documentation, ex-
ecutable downloads, and examples.

The core BlenderVR modifications to the BGE master consist in
the addition of a prerender method prior to the basic predraw,
the ability to redefine the projection matrix, and the possibility to
redefine the aspect-ratio from a python script (allowing easier porta-
bility of scenes between architectures). BlenderVR routines, as
well as most of the BlenderVR patched modifications, have been
implemented so as to be as transparent as possible regarding BGE

*e-mail: brian.katz@limsi.fr

IEEE Virtual Reality Conference 2015
23 - 27 March, Arles, France
978-1-4799-1727-3/15/$31.00 ©2015 |IEEE

""""""""""" XML Configuration)»; ArChlteCtu re
° | BlenderVR start VRscene.blend
> e ‘ ‘
o
< - = start() f o)
BB R ‘Master| k441‘+slave 1| Slave N
VR Platform configuration
VRPN/OSC, User(s) parameters
Blender Game Engine BGE BGE

""""""" VRPN Server

blendervr.run()
! processor.py
—

Audio Programming
Interface

Spatializer(s) ! ! Py

0sC
network synch.

I UDP_> UDP

net. synch.

frustum projections frust. Proj.

¥ ewery
me44+ AAAAAAAALAAAAAAAAAA,

Figure 1: BlenderVR architecture graph showing (right) the 3 main
processes integrated in the BGE frame based sequencer. net-
work synchronization process maintains consistency between mas-
ter/slave rendering nodes. frustum projection handles tracked adap-
tive stereoscopic rendering calculations.

native processes in the hope that they will soon be integrated in the
official Blender master, eliminating the need for patching.

2.1 Master/Slave synchronization

The synchronisation of multiple graphic nodes is necessary for as-
suring continuity and coherence of the scene in situations with mul-
tiple displays (e.g., CAVE, videowall) or rendering instances (e.g.,
mutliple HMD). Master/Slave synchronization is carried out at each
frame, in the prerender method. Synchronization, executed via
a python script, inspects every object in the scene to see if it has
changed. If so, the update information is passed from the Mas-
ter to the Slave nodes before rendering. TCP multi-unicast is used
for synchronization and acknowledgment messages. By default,
BlenderVR synchronizes every object in the scene amongst the ren-
dering nodes. BlenderVR also supports synchronization, white and
black lists, forced synchronization without checks or no synchro-
nization or checks for specific objects, thereby reducing unneces-
sary calculation overhead in complex scene rendering.

Already evaluated for CAVE-type configurations, current de-
velopment concerns collaborative work with combined HMD and
CAVE or multiple HMD devices on shared or remote sites. The
importance of synchronization of scene graphs is crucial for such
applications and BlenderVR should be well suited to this situation.

2.2 Adaptive stereoscopy for large-screen projections

Adaptive stereoscopy is required for Workbench, projected Walls
or CAVE-like systems. This rendering mainly consists in changes
of coordinate systems and projection operations. The resulting
modification in the projection matrix is necessary because the user
is, more often than not, away from the center of the screen and

203

204

thereby requires non-symmetric projection matrices. This is up-
dated to take into account user’s current head position, orientation,
and eye separation. Such variable frustum projections have been
implemented so as to be computed locally on each graphical node
before rendering in the prerender process. This implementation
is generic enough to manage multi-stereoscopy, which allows for
several tracked users to each have correct depth perception.

2.3 External message processing

While stereoscopic rendering and synchronization are supposedly
basic VR features, message exchange with external software rep-
resents a cornerstone in any scene graph editor as it largely im-
pacts end users in their scene developments. BlenderVR to external
(and vice versa) user defined interactions are conventionally imple-
mented and collected in a python script attached to the VR scene.
Incoming messages are often dedicated to user integration or in-
teraction in the VR scene, from position/orientation coordinates to
various controller states, and typically employ the VRPN protocol.
For this, Blender VR implements the Processor python Class which
integrates dedicated OSC and VRPN APIs to ease message process-
ing for access to controllers and user parameters.

Most outgoing messages are currently intended to add sound to
the scene, i.e., update scene graph object properties in the Sound
Rendering Engine (SRE) using the well known Open Sound Con-
trol (OSC) protocol. The SRE here refers to the system gathering
audio object definitions (sound source, position, etc.) and sound
rendering methods in an Audio Programming Environment (e.g.,
Max/MSP, PureData, etc.) plus eventual loudspeaker/headset out-
puts. The OSC API encapsulates three main Classes of messages:
Global, Object, and User. A fourth class of message manages the
routing of Objects to multiple spatialization engines (i.e., Users),
such that certain Objects can be rendered for selected Users if de-
sired, and is thus named the ObjectUser Class. These messages de-
fine which engine handles a given set of objects in the scene graph.

3 EXAMPLE INSTALLATIONS

Scene graph edition in BlenderVR is essentially based on Blender
creation and animation tools, while audio rendering related events
are written in the Processor script. The overall process being ar-
chitecture independent, most scene development can be carried out
on standard laptops, before being ported to the actual VR systems.
Once installed, basic import of a Blender scene (without tracking
nor audio rendering) is almost transparent.

BlenderVR has been developed on two VR platforms: SMART-
12 [8] and EVE?. Portability of developed scenes between such dif-
ferent VR architectures is the driving goal behind the project.

The SMART-12 implements passive adaptive stereoscopic ren-
dering through a pair of front-projected rigid screens which also
serve as a 24 channel loudspeaker array offering horizontal Wave
Field Synthesis audio rendering. One computer handles graphics,
with 4 projectors for 2 screens, running Ubuntu Precise on an In-
tel Core 2 2.66 GHz Quad Q9400, 4 GB of RAM, and 2 NVIDIA
GeForce GTX 470. Audio is handled separately.

The EVE system offers a multi-user/multi-sensorimotor environ-
ment with adaptative double-stereoscopic rendering, 15 loudspeak-
ers and 2 RF modules for wireless audio input and individual binau-
ral renderings. EVE comprises 4 rear-projected screens coupled to
7 projectors providing ~ 60m? of high definition projection space.
The system comprises 8 i7 computers (1/projector + 1 monitoring
console) with Ubuntu Precise, 12 GB of RAM, and Quadro 6000.
Audio and haptics are handled separately.

4 EXAMPLE APPLICATIONS

In a study investigating paradigms for 6DoF navigation in im-
mersive virtual worlds, [2] compared joystick-based input devices
and steering metaphors based on movements of the user’s body,

e.g., head-controlled paradigms. BlenderVR served as the software
platform, with various input devices controlling the user’s flight
through a series of navigational tasks. While the virtual world was
static, the selection of various test configurations and generation of
experimental logs were all achieved within BlenderVR.

To evaluate designs for a user audio guidance system for rescue
workers, [5] implemented virtual prototypes to provide ecologically
valid test conditions. The BlenderVR based virtual prototypes ex-
ploited various input devices (e.g., 6 DoF tracking, Wii Balance
Board, Wiimote) along with OSC communication with MaxMSP
to generate interactive audio feedback sonification based on geo-
metrical data from the BlenderVR scene.

Real-time animation of virtual avatars based on motion cap-
ture within the BlenderVR framework was investigated by [4]. A
Python module was developed to control avatars using an ART Mo-
Cap tracking system, common in VR applications.

Focusing on collaborative situations, [1] investigated navigation
in a multi-stereoscopic immersive system (several users sharing the
same restricted workspace). In this context, a proper navigation
paradigm should provide users both efficient control of virtual nav-
igation and a guaranty of users’ safety in the real workspace relative
to the display system and between users.

5 CONCLUSION

BlenderVR project was created in response to the lack of afford-
able scene creation software dedicated to Virtual Reality in aug-
mented environments by implementing a new scene graph editor
based on the popular Blender Game Engine. To adapt the BGE
to VR, BlenderVR includes multi-user tracked stereoscopic render-
ing, master-slave synchronization, and OSC and VRPN methods
for external applications. Windows, Linux, and MacOS compatible,
BlenderVR is released as open source, for those in need of straight-
forward scene development solutions for multimodal VR creation.

ACKNOWLEDGEMENTS

This work was funded in part by the ANR Equipex DIGISCOPE
project, the FUI-BiLi project (http://www.bili-project.org/), and an
ANRT CIFRE industry-linked PhD research with Airbus D&S.

REFERENCES

[1] W. Chen, N. Ladeveze, C. Clavel, D. Mestre, and P. Bourdot. User
cohabitation in multi-stereoscopic immersive virtual environment for
individual navigation tasks. In IEEE Virtual Reality (IEEE VR), page
(accepted), Arles, Mar. 2015.

[2] W. Chen, A. Plancoulaine, N. Férey, D. Touraine, J. Nelson, and
P. Bourdot. 6DoF navigation in virtual worlds: comparison of joystick-
based and head-controlled paradigms. In /9th ACM Symp on Virtual
Reality Soft and Tech (VRST), pages 111-114, New York, 2013. ACM.

[3] D. Felinto and M. Pan. Game Development with Blender. Cengage
Learning, 1st ed., 2013.

[4] H.Li. Création et contrdle de I’avatar dans la plateforme BlenderCave.
Master’s thesis, Université Paris-Sud, 2014.

[5] D. Poirier-Quinot and B. F. Katz. CAVE-based virtual prototyping of
an audio radiogoniometer: Ecological validity assessment. In 20th Intl
Conf on Auditory Display (ICAD), pages 1-8, NYC, June 2014.

[6] D. Poirier-Quinot, D. Touraine, and B. F. Katz. BlenderCAVE: A flex-
ible open source authoring tool dedicated to multimodal virtual reality.
In 5th Joint Virtual Reality Conf (JVRC), pages 19-22, Orsay, 2013.

[7] D. Poirier-Quinot, D. Touraine, and B. F. Katz. BlenderCAVE: A mul-
timodal scene graph editor for virtual reality. In 19th Intl Conf on Au-
ditory Display (ICAD), pages 223-230, Lodz, Oct 2013.

[8] M. Rébillat, E. Corteel, and B. Katz. SMART-12 ”Spatial Multi-user
Audio-visual Real-Time Interactive Interface”. In /25th Conv of the
Audio Eng Soc, pages 7609_1-16, 2008.

"http://BlenderVR limsi.fr
Zhttp://www.blender.org
3http://github.com/BlenderVR

“http://www.limsi.fr/venise/EVEsystem

