
The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

BLENDERCAVE:
A MULTIMODAL SCENE GRAPH EDITOR FOR VIRTUAL REALITY

David Poirier-Quinot

EADS Astrium Services, Suresnes, France
ETIS/ENSEA - Univ. Cergy-Pontoise - CNRS

LIMSI-CNRS, Orsay, France
david.poirier-quinot@limsi.fr

Damien Touraine & Brian F.G. Katz

LIMSI-CNRS, Orsay, France

damien.touraine@limsi.fr
brian.katz@limsi.fr

ABSTRACT
This paper presents the BlenderCAVE project, which extends the
3D creation content software Blender and its Game Engine (BGE)
to Virtual Reality (VR) applications. Based on a multi-screen non-
stereoscopic adaptation of the BGE [Gascon et al., 2010], Blender-
CAVE now integrates a complete framework dedicated to Virtual
Reality (VR), compatible with the three main Operating Systems
for any given VR architecture configuration. It has been devel-
oped by audio and VR researchers with support from the Blender
Community on LIMSI’s state of the art VR platforms. Acting
as a Scene Graph, BlenderCAVE handles multi-screen/multi-user
tracked stereoscopic rendering through an efficient low-level mas-
ter/slave synchronization process while controlling spatial audio
rendering (ambisonic, multi-user binaural, WFS, etc.) and haptic
events through OSC and VRPN protocols. The scene creation pro-
cess itself is reduced to simple Blender manipulations including
basic python programming easily carried out using standard lap-
tops. OSC client and spatial audio rendering methods have thus
far been implemented in the Max/MSP Audio Programming Envi-
ronment.

1. INTRODUCTION, SCENE GRAPH EDITORS FOR
RESEARCH IN VR

Research commonly exploits Virtual Reality (VR) for two kind
of applications: fast development for contextualized proof of con-
cepts and situation simulation, typically requiring full perceptive
environments. In the latter, the more realistic Virtual Environ-
ments offer a better sense of presence that often leads to more
relevant results and feedback.

Over the last decade, realism was often associated with graph-
ics. Led by animation and video game industries the scientific VR
community acquired numerous ready to use 3D creation content
softwares that would latter provide multi-screen tracked stereo-
scopic rendering solutions. Amidst the set of non-public licensed
softwares, Virtools [1] and Quest3D [2] stand out as references,
being tailored to VR content creation and real-time exploration.
Worth noting, Unity Technologies lately released a plug-in [3] to
run the Unity3D software [4] on any VR platform, providing at the
same time its immense game designer network and inexhaustible
Asset Store to VR research community. Along with Eon Real-
ity [5] and Worldviz [6] solutions (Eon Icube and Vizard respec-
tively), commercial solutions are nowadays available to support
researchers in their VR based investigations, on the understanding
that they are disposed to invest financially in such, typical instal-
lations having yearly maintenance fees most often calculated on

a per screen basis. This limits development flexibility and mutli-
platform/multi-configuration utilization. The relatively closed na-
ture of these solutions also limits their use in research oriented
applications.

Hybrid solutions like CaveUT [7], a Pittsburgh University gen-
uine adaptation of the UnrealTournament Game Engine [8] for VR
architectures combine affordability and stable developments, with
drawbacks such as platform compatibility and limited content cre-
ation capabilities.

As for public licensed software, developers proposed solutions
to adapt open source software like OpenSceneGraph [9] to VR ar-
chitectures [10], or created their own from scratch [11, 12, 13, 14],
resulting in functional yet seldom supported solutions in addition
to low-level coding knowledge requirements for creating rich and
interactive VR scene graphs. For a more exhaustive study on 3D
creation content softwares for VR research see [15, 16].

Lately, improvements regarding VR technologies however
extended realism requirements to other modalities [17, 18],
amongst which audio and haptic emerged as obvious immersion
enablers. Here-above reported commercial solutions generally
support cross-software communication protocols such as VRPN
[19] and OSC [20] to delegate these modalities, or handle them
through dedicated internal solutions, the plug-in or software
counterpart usually adding to the general system expense. Several
research teams developed scene graph editors interconnecting
graphic and sound/haptic libraries [21, 22, 23] yet these are often
tailored to specific research fields or architectures. Thus far, no
open source scene graph editor went as far as to be accepted as a
durable solution for multi-modal VR scenes development, due
usually to the lack of maintenance on the open source hand and
the scarce yet demanding research community on the non-public
licensed one.

While an optimal VR Suite does not exist yet, one can list
many requirements for such, requirements that we obviously tried
to achieve in the BlenderCAVE project presented in this paper.
Above all, it would have to support the three main Operating
Systems exploited in VR architectures (Linux, Windows, and
Mac OS). Its main development shall be based on programming
languages or software with active communities, potentially open
source, where independent communities would ensure ready to
use SDK and future developments. Within this scope, what is
needed is a main scene graph editor coupled with expendable
audio and haptic front ends, where each could be independently
extended or removed as need be. It would also have to enable
non-programmers to create simple scene graphs, offer
straightforward scene portability between architectures, and allow



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

external developers to implement new features as need be.
This paper presents the current state of development of the

BlenderCAVE project, first presented in [24] under the project title
BlenderCAVE3D-s. Section 2 presents the open source Blender-
CAVE VR scene graph editor issued from the Blender software.
Section 3 details the Max/MSP based Sound Rendering Engine,
handling both Ambisonic and multi-user binaural renderings. Sec-
tion 4 exposes concrete developments of the BlenderCAVE Scene
Graph Editor on two different VR architectures while Section 5
evokes future BlenderCAVE related projects.

2. BLENDERCAVE, A VR SCENE GRAPH EDITOR

Blender is a multi-platform open source 3D creation content
software [25] with enough functionalities to create photorealistic
pictures, high quality animations and, most of all, video games.
Blender based games exploit a real-time rendering engine called
the Blender Game Engine (BGE) which handles a multitude of
physical interactions through the implemented Bullet Physics
Library [26] while general game logic may be defined through
blocks and/or embedded python scripts. Gathering users for more
than a decade, Blender now boasts a large support community, a
dedicated professional network [27], and several scene
repositories where one may find plenty of reusable material.

Based on these observations, a Spanish research team sought
to use Blender on a VR architecture, which led to the first func-
tional instance of BlenderCAVE in 2010 [28]. Not yet address-
ing tracked adaptive stereoscopic rendering nor sound spatializa-
tion, this version nonetheless permitted one to instantly produce
any Blender scene onto a 4-wall CAVE (Cave Augmented Virtual
Environment) architecture, considerably easing a usually strenu-
ous VR content creation process. A year latter, our working group
composed of VR and acoustic researchers decided to extend their
work to a complete scene graph editor that would eventually sup-
port and unify future VR projects, focusing on multi-platform and
multi-architecture interoperability.

BlenderCAVE is a patched version of the original Blender
software, where internal routines have been added to handle the
three basic functions needed in standard CAVE VR applications:

1. Master/Slave synchronization

2. Adaptive stereoscopic rendering

3. External message processing

A basic architecture graph is shown in Figure 1. BlenderCAVE
is launched with a shell command (through any of the graphical
cluster nodes) while architecture related parameters (e.g. eye sep-
aration, screen dimensions and positions, VPRN server address,
etc.) are stored in a shared xml file. An instance of the BGE is then
executed on all the rendering nodes, external message processing
and mapping into scene graph events being conducted through the
Master only.

The core BlenderCAVE modifications to the BGE trunk con-
sist in the addition of a prerender method prior to the basic
predraw, the ability to redefine the projection matrix, and the
possibility to redefine the aspect-ratio from a python script (al-
lowing easier portability of scenes between architectures). While
not developed further in this paper, it is worth noting that Blender-
CAVE routines, as well as most of the BlenderCAVE patched mod-
ifications have been implemented so as to be as much transparent
as possible regarding BGE native processes in the hope that they
will be integrated in the official Blender trunk.

2.1. Master/Slave synchronization

Master/Slave synchronization is carried out at each frame, in the
prerender method. Synchronization, executed via a python
script, inspects every object in the scene to see if it has changed.
If so, the update information is passed form the Master to the
Slave nodes before rendering. Such communications are based
on the UDP protocol. The statelessness of broadcasted messages
from Master to Slave usually results in the use of UDP as a stan-
dard in VR architectures rather than its TCP counterpart, due to
the additional overhead and reception acknowledgments in TCP
which hinder real-time rendering. The TCP protocol is however
yet used for synchronization acknowledgment messages in the ac-
tual BlenderCAVE version. By default, BlenderCAVE synchro-
nizes every object in the scene amongst the rendering nodes. Fu-
ture versions will support synchronization white and black lists,
with forced synchronization without checks or no synchronization
or check for specific objects, thereby reducing unnecessary calcu-
lation overhead in complex scene rendering.

2.2. Adaptive stereoscopic rendering

Multi-user adaptive stereoscopic rendering mainly consists in
changes of coordinate systems and projection operations. The
resulting modification in the projection matrix is necessary to take
into account tracked users, who are more often than not away
from the center of the screen and thereby require non-symmetric
projection matrices, updated to take into account the users current
head position, orientation, and eye separation. Such variable
frustum projections have been implemented so as to be computed
locally on each graphical node before rendering in the
prerender process.

2.3. External message processing

While stereoscopic rendering and synchronization are supposedly
basic VR features, message exchange with externals represents a
cornerstone in any scene graph editor as it largely impacts end
users in their scene developments. BlenderCAVE to external (and
conversely) user defined interactions are conventionally
implemented and collected in a python script attached to the VR
scene named [sceneName].processor.py (see Figure 1), to easily
differentiate BlenderCAVE from Blender related logic
implementations (such as objects displacements, collision
triggered events, etc.). Most of the current incoming messages are
dedicated to user integration or interaction in the VR scene, from
Cartesian position/orientation coordinates to controllers various
states and usually resort to VRPN protocol in our architecture.
For such, BlenderCAVE implements the Processor python Class
(different from here above evoked processor.py script) which
gathers methods to ease VRPN related message processing,
granting simple access to controllers and user parameters on the
understanding that they be formerly instantiated in the previously
mentioned xml file.

As for outgoing messages, most are currently intended to add
sound to the scene, i.e. update scene graph object properties in the
Sound Rendering Engine (SRE) using the well known Open Sound
Control (OSC) protocol. The SRE here refers to the system gath-
ering audio object definitions (sound source, position, etc.) and
sound rendering methods in an Audio Programming Environment
(e.g. Max/MSP, PureData, etc.) plus eventual loudspeaker/headset



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

Figure 1: BlenderCAVE architecture graph. The right-hand side exposes the 3 main processes involved in a BlenderCAVE run, whose
execution has been integrated in the BGE frame based sequencer. The network synchronization process maintains consistency between
screens controlled by master/slave rendering nodes while the frustum projection handles tracked adaptive stereoscopic rendering related
calculations. When required, OSC and VRPN communication related implementations are by convention stored in the processor.py python
script. Grey arrows indicate features under development (e.g. haptic feedback for sensorimotor exploration is not yet available).

outputs. Here BlenderCAVE proposes an OSC module that encap-
sulates three main Classes of messages: Global, Object, and User.

Global messages are used in the SRE to set general properties
like main volume, room characteristics (reverb volume, warmth,
etc.) and architecture specific configurations. A Global message
can for example be used to select the spatialization engine and
its associated audio output mapping corresponding to a given ex-
periment on a specific rendering architecture. During the course
of scene development on a laptop or an architecture that differs
from the final high performance rendering system, one could for
instance use a Global message to load a basic binaural spatializa-
tion engine in the SRE before porting the scene to the real VR ar-
chitecture where the corresponding message can designate a more
sophisticated audio rendering method. With regards to the SRE, an
Object is a simple sound emitter that requires messages to define
its nature (simple sound file, microphone input, etc.), position, ori-
entation, etc. The User encompasses individuals interacting with
the scene graph as well as their associated spatialization engines.
The first User could thus be defined at a static position, such as
the center of the CAVE associated with an Ambisonic rendering,

while second and third could be real users tracked as they explore
the scene equipped with headphones and receiving associated indi-
vidual binaural renderings. User messages are designed to update
individual positions for adaptive binaural rendering and set indi-
vidual parameters like volume or Head Related Transfer Function.

A fourth class of messages has been included that manages the
routing of Objects to multiple spatialization engines (i.e. Users),
such that certain Objects can be rendered for selected Users if de-
sired, and is thus named the ObjectUser Class. These messages
define which engine is to handle a given set of objects in the scene
graph. Messages from this class are used to tailor Users’ sound
fields by individualizing perceived sound sources. Figure 2 illus-
trates a basic Blender to SRE OSC configuration using methods of
the BlenderCAVE OSC module.

3. BLENDERCAVE ASSOCIATED SOUND RENDERING
ENGINE, EXAMPLE USING MAX/MSP

We chose to develop BlenderCAVE SRE as an external applica-
tion, i.e. not directly included in the main framework as would



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

Figure 2: Example of a python implementation using the Blender-
CAVE OSC module (invoked at line 2, the blender_cave.getOSC()
command) to send 4 OSC messages and associated Sound Render-
ing Engine received instructions.

have been an openAL based implementation. Benefits are twofold,
offering the flexibility to run both renderers (audio and visual) on
different architectures to distribute CPU usage, and allowing for
the use of more accomplished audio software providing needed
flexibility and functionality for research applications. While ex-
pendable (meaning that BlenderCAVE functions without it), the
SRE plays a non-negligible role in the scene graph general ren-
dering process, as does the choice of its developing environment
in BlenderCAVE’s further evolutions. Basic specifications are to
natively support OSC protocol [29] and be sufficiently Object-
Oriented to handle dynamic Object instantiation and attribute shar-
ing amongst spatialization engines.

There is no lack of Audio Programming Environments (APE)
that fulfill these requirements; SuperCollider, Open Sound World,
PureData, Max/MSP, Csound, ChuncK, CLAM, etc. The latter
has already been used as a BGE coupled SRE implementing room
acoustics simulation [30]. The auralization process was however
clearly dedicated to a specific scene, wrapped around its very logic
in embedded scripts. More complete solutions have been designed
by researchers at Wollongong and McGill Universities, the former
coupling Max/MSP and a Java3D scene graph into a 3D audio-
visual interface [31] while the latter designed AudioScape, a mod-
ular Pure Data library paired to the OpenSceneGraph editor as
a graphical front end [32]. While the Wollonglong project was
clearly not designed as a VR scene development toolkit, object
motion being handled through xml scripts or command line in-
structions, the AudioScape solution now proposed as audioTWIST
[33] could clearly support future BlenderCAVE developments.

While solutions like SuperCollider, Csound, or the VR ori-
ented Virtual Sound Server propose programming environments
and mechanisms closer to BlenderCAVE’s, APEs like Pure Data
and Max/MSP offer powerful signal processing and sound design
features through real-time interactions in user-friendly GUIs. In
order to maintain compatibility with parallel research efforts we
chose to develop our SRE using Max/MSP. We note however that
an alternate SRE could be developed without modification to the
BlenderCAVE architecture as long as it respects the established
OSC nomenclature.

The two challenging features the SRE had to implement were
dynamic Object instantiation and easy audio rendering method

Figure 3: BlenderCAVE associated Sound Rendering Engine ar-
chitecture implemented in Max/MSP. objectUser messages are
used to allocate sound sources (Objects) to specific sets of Users.
Sounds related to Object N for instance will here be rendered only
in Users’ headsets through the binaural engines embedded in the
Sound Encoder/Decoder module. (See Figure 4 for associated
messages)

Figure 4: ObjectUser received OSC messages in the SRE that route
Object 1 to Users 0 and 2 (i.e. spatialization engine 0 and 2) and
Object N to Users 1 and 2.

substitution. The former would allow audio rendering of an un-
limited number of objects without reshaping the Max/MSP SRE
patch, limiting CPU usage to the exact number of required items,
while a shell like implementation allowing spatialization methods
to be easily replaced would serve BlenderCAVE’s sustainability.
Both features are enabled through the Max/MSP poly„ object,
which allows for dynamic patcher loading (up to 1023 at a time
for a single poly instance) in addition to appreciable multithread
processing capacities.

As seen in Figure 3, the Max/MSP SRE patch is composed of
three main entities: the OSC Dispatcher, the Object Class, and the
Sound Encoder/Decoder. The Dispatcher routes OSC messages
through the patch, from global configuration messages that load
the required Encoder/Decoder pair for a given User to Object mes-
sages forwarded to different Object instances. The Sound Encoder
contains the spatializer, some associated tools (HRTFs selection,
ambisonic order, room characteristics, etc.), while the Decoder en-
sures coherent audio output routing. Listed ObjectUser messages
in Figure 4 have been used to route Object outputs (both audio sig-



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

nal and position) to the desired sound Encoder/Decoder (i.e. User).
Anecdotally, Max/MSP Jitter methods are used to calculate

object positions relative to users (homogeneous matrix inversion
and multiplication) while the overall spatialization process has
been optimized using the poly„ mute feature which halts signal
processing on unused spatializers.

4. INSTALLATION AND PERFORMANCE

BlenderCAVE installation mainly consists in patching original
Blender sources (current patch is designed for Blender version
2.64) and configuring environment variables on all the rendering
nodes. BlenderCAVE sources and step-by-step installation
process are available on the BlenderCAVE webpage [34]. The
developed SRE is also available yet not released as a runtime
application as it makes use of proprietary spatialization modules,
not included in the release. It is however fully compatible with
IRCAM’s spatialization solutions available for Max/MSP.

Scene graph edition in BlenderCAVE is essentially based on
Blender creation and animation tools, while audio rendering re-
lated events are written in the Processor script. The overall process
being architecture independent, most of our scene development is
now carried out on standard laptops, before being ported to the ac-
tual VR systems. Once BlenderCAVE installed, basic import of a
Blender scene (without tracking nor audio rendering) on a VR sys-
tem simply requires 2 lines of code in an embedded python script.

BlenderCAVE has been developed on LIMSI’s VR platforms,
namely the SMART-I2 [35] and EVE [36] systems. Ease of porta-
bility of developed scenes between these two very different VR ar-
chitectures was the driving goal behind the BlenderCAVE project.

The SMART-I2 implements passive adaptive stereoscopic ren-
dering through a pair of front-projected rigid screens which also
serve as loudspeakers, each being equipped with twelve electro-
mechanical exciters enabling horizontal Wave Field Synthesis [37]
audio rendering. A single computer handles the graphics, with
four projectors for the two screens, running under Ubuntu Precise
(12.04) on an Intel Core 2 Quad Q9400 at 2.66 GHz with 4 GB
of RAM and a pair of NVIDIA GeForce GTX 470 graphic cards.
Audio and Wave Field Synthesis rendering are handled on separate
machines.

The EVE system has been designed to provide a
multi-user/multi-sensorial environment, deploying active adaptive
stereoscopic rendering, a set of fifteen loudspeakers and RF
modules for wireless audio input and individual binaural
rendering. EVE is composed of four rear-projected screens
coupled to seven cinema-sized projectors (only one for the floor
screen) each controlled by a different computer, altogether
conferring about 60m2 of high definition projection space. The
system comprises eigth i7 computers (one per projector plus a
monitoring console) running Ubuntu precise, 12 GB of RAM
capacity and a Quadro 6000 graphic card. Audio rendering is
handled on a separate machine. Strict acoustical constraints have
been applied to enhance immersion sensations, from projector
insulation to rendering cluster relocation, ensuring an acoustic
noise floor of less than 30 dBA at the center of the rendering area
when operating the entire system.

One of the main concerns with any real-time interactive sys-
tem is the effect of CPU load and resulting performance degra-
dation, such as the impact on frame rate, here relative to the per-
formance of the basic BGE. To examine this question, a relatively
complex scene was created and the resulting frame-rates exam-

Figure 5: Blender scene used to quantify BlenderCAVE overload
regarding basic BGE. It is composed of a stack of 490 cubes
which fall on a rigid plane. The objects’ motions are driven by
the Blender integrated Physics Engine Bullet.

ined. The scene, shown in Figure 5, contains a stacked structure
composed of 490 independent cubes, which is dropped and whose
fall is driven by Blender’s Physics Engine. This scene should push
the real-time synchronization process until depreciation of the ren-
dered frame rate is observable. Three different scenarios have been
compared, simple BGE for reference, a single standalone Blender-
CAVE Master, and a multi-screen BlenderCAVE. These test sce-
narios have been implemented on three different platforms: the
EVE system, the SMART-I2 system, and a 2.3 GHz Intel core
i7 MacBook with 4 GB of RAM running Mac OS X. The laptop
multi-screen scenario was configured as two BlenderCAVE win-
dows (Master and one Slave) on a single screen.

The resulting frame-rates during the simulation are reported
in Figure 6. The initial drop in frame-rate at around 500 ms cor-
responds to the first ground impact of the cube stack. While the
BlenderCAVE standalone mode with only the BlenderCAVE Mas-
ter instance does not show any notable affect on rendered frame
rate, the multi-screen BlenderCAVE Master/Slave instances have
significant reductions, down to 25 fps for EVE’s eight display con-
figuration. This degradation in performance is attributed to the
frame-by-frame synchronization, and associated testing of move-
ment of every object, highly demanding for such a scene. Ongoing
improvements regarding the synchronization process are exposed
in next Section.

To present BlenderCAVE’s usability we present in the Ap-
pendix the creation of an audio based game of hide-and-seek for
two players in BlenderCAVE based on material gathered on the
Internet.

5. FUTURE WORK

Since submission of this paper, our main concern has been to
improve the synchronization process. Previously based on UDP
multicast transmissions acknowledged through TCP protocol
(Figure 6), BlenderCAVE now exploits only the latter, yet in a
multi-unicast fashion. Thus, instead of sending UDP datas
packets plus TCP acknowledgment requests, the Master node now
merges both processes in distinct TCP communications amongst
its Slaves. Enhanced frame-rates related to the dropped stacked
structure scene are reported in Figure 7 for the EVE system only.



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

Figure 6: Frame-rates with respect to simulation time on three different architectures running the BGE, a single standalone BlenderCAVE
Master (BlenderCAVE single), and a multi-screen Master/Slave BlenderCAVE instance (BlenderCAVE all). Laptop mutli-screen run in-
volves 2 BlenderCAVE windows (Master and Slave) on a single screen. SMART-I2 multi-screen run involves 4 instances on a single
computer. EVE multi-screen run involves a BlenderCAVE instance on each of the 8 rendering nodes.

Figure 7: Enhanced frame-rates with respect to simulation time on
the EVE system running the BGE, a single standalone Blender-
CAVE Master (BlenderCAVE single), and a multi-screen Mas-
ter/Slave BlenderCAVE instance (BlenderCAVE all) on 8 render-
ing nodes.

The next major step in BlenderCAVE development is to have
the main elements natively integrated in the Blender trunk, lim-
iting maintenance issues regarding future Blender releases. Dis-
cussions are underway with Blender community members and we
are working with external developers to confirm BlenderCAVE’s
multi-architecture aspect. Any Beta testers willing to join the pro-
cess are obviously welcome.

Room acoustic simulation in BlenderCAVE is being
discussed, porting a former project [38] employing a real-time
image-source based rendering engine from its previous
architecture to BlenderCAVE. Basically, the Blender mesh of a
room feeds the geometric acoustics engine while Max/MSP and

BlenderCAVE provide the audio and visual renderings
respectively.

One could also take advantage of the afore-mentioned
audioTWIST OpenSource library to add source directivity and
room acoustics to a PureData based SRE, thus providing a fully
open source BlenderCAVE suite.

The integration of haptic rendering is a future project of great
interest for multimodal interaction. The implementation of hap-
tic control and messaging is therefore among the works currently
under development.

We note that the current BGE version does not natively im-
plement particles emission, which may represent an hindrance to
some VR scene development. Based on the X-Emitter add-on [39]
however, smoke and particles can be generated in the BGE. X-
Emitter has been successfully tested in BlenderCAVE, the next
step would be to natively integrate this feature in the next release.

6. CONCLUSION

Because of the lack of affordable scene creation software dedicated
to Virtual Reality in augmented environments, we decided to im-
plement a new scene graph editor based on the popular Blender
Game Engine. Adding multi-user tracked stereoscopic render-
ing and master-slave synchronization features to adapt the BGE
to VR and CAVE architectures, we integrated OSC and VRPN
methods to facilitate BGE communications with external appli-
cations. With VRPN chiefly associated with I/O interfaces and
tracking processes, a Max/MSP based Sound Rendering Engine
has been especially implemented to interpret BlenderCAVE OSC
messages. This reduces VR scene sound spatialization within the
scene graph to basic python instructions, handling multi-user spa-
tialization methods (e.g. binaural, Ambisonic) and has been built
as to easily substitute the embedded spatialization engine. Com-
patible with Windows, Linux, and MacOS for any CAVE like ar-
chitecture, BlenderCAVE is released as open source. Built on top
of self-evolving software accepted as references in their respective
domains, BlenderCAVE is aimed at those in need of a straightfor-
ward scene development solution for multimodal VR creation.



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

7. ACKNOWLEDGMENTS

Part of the work reported here was supported by grants from the
French government, through the ANR Equipex DIGISCOPE
project and the ANRT in the context of a CIFRE industry-linked
research funding program with Astrium Services.

8. REFERENCES

[1] “3DVIA Virtools,” www.3ds.com/products/3dvia/3dvia-
virtools, last check 2013-05-24.

[2] “Quest3D,” www.quest3d.com, last check 2013-05-24.

[3] “I’m in VR. Middle VR: Unity VR Plug-In,”
www.imin.fr/middlevr, last check 2013-05-24.

[4] “Unity3D game engine,” www.unity3d.com, last check
2013-05-24.

[5] “Eon Icube,” www.eonreality.com, last check 2013-05-24.

[6] Worldviz, “Vizard VR software toolkit,”
www.worldviz.com/products/vizard, last check 2013-05-24.

[7] J. Jacobson and M. Lewis, “Game engine virtual reality with
CaveUT,” Computer, vol. 38, no. 4, pp. 79–82, April 2005.

[8] “UnrealTournament,” www.unrealtournament.com, last
check 2013-05-24.

[9] “OpenSceneGraph,” www.openscenegraph.org/projects/osg,
last check 2013-05-24.

[10] J. P. Schulze, A. Prudhomme, P. Weber, and T. A. DeFanti,
“CalVR: an advanced open source virtual reality software
framework,” in IS&T/SPIE Electronic Imaging. Interna-
tional Society for Optics and Photonics, 2013, pp. 864 902–
864 902.

[11] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira, “VR Juggler: A virtual platform for virtual
reality application development,” in Proceedings of Virtual
Reality, 2001. IEEE, 2001, pp. 89–96.

[12] D. Germans, H. J. Spoelder, L. Renambot, and H. E. Bal,
“VIRPI: a high-level toolkit for interactive scientific vi-
sualization in virtual reality,” in Proc. Immersive Projec-
tion Technology/Eurographics Virtual Environments Work-
shop (IPT/EGVE), May, 2001, pp. 16–18.

[13] D. Touraine, P. Bourdot, Y. Bellik, and L. Bolot, “A frame-
work to manage multimodal fusion of events for advanced
interactions within virtual environments,” in ACM Interna-
tional Conference Proceeding Series, vol. 23, 2002, pp. 159–
168.

[14] M. Courgeon, J.-C. Martin, and C. Jacquemin, “MARC: a
multimodal affective and reactive character,” in Proceedings
of the 1st Workshop on AFFective Interaction in Natural En-
vironments, 2008.

[15] T. Wright and G. Madey, “A survey of collaborative virtual
environment technologies,” University of Notre Dame-USA,
Tech. Rep, 2008.

[16] C. Just, K. Meinert, A. Bierbaum, and P. Hartling, “Open
source virtual reality,” in Virtual Reality, 2002. Proceedings.
IEEE, 2002, pp. 303–303.

[17] Q. Zhao, “A survey on virtual reality,” Science in
China Series F: Information Sciences, vol. 52, pp. 348–
400, 2009. [Online]. Available: http://dx.doi.org/10.1007/
s11432-009-0066-0

[18] T. Fernando, N. Murray, G. Gautier, S. Mihindu, K. Loupos,
P. Gravez, H. Hoffmann, J. Blondelle, S. Di Marca,
M. Fontana et al., “Contrat INTUITION IST-NMP-1-
507248-2, WP1.B State-of-the-art in VR,” Information So-
ciety Technologies, Tech. Rep., 2007.

[19] R. M. Taylor, II, T. C. Hudson, A. Seeger, H. Weber,
J. Juliano, and A. T. Helser, “VRPN: a device-independent,
network-transparent VR peripheral system,” in Proceedings
of the ACM symposium on Virtual reality software and
technology, ser. VRST ’01. New York, NY, USA:
ACM, 2001, pp. 55–61. [Online]. Available: http:
//doi.acm.org/10.1145/505008.505019

[20] M. Wright, “Open Sound Control: an enabling technology
for musical networking,” Organised Sound, vol. 10, pp. 193–
200, 11 2005.

[21] G. Reitmayr and D. Schmalstieg, “An open software archi-
tecture for virtual reality interaction,” in Proceedings of the
ACM symposium on Virtual reality software and technology.
ACM, 2001, pp. 47–54.

[22] L. Valbom and A. Marcos, “Wave: Sound and music in an
immersive environment,” Computers & Graphics, vol. 29,
no. 6, pp. 871–881, 2005.

[23] G. Wakefield and W. Smith, “Cosm: A toolkit for compos-
ing immersive audio-visual worlds of agency and autonomy,”
in Proceedings of the International Computer Music Confer-
ence (ICMC), 2011.

[24] D. Poirier-Quinot, D. Touraine, and B. F. Katz, “Blender-
Cave 3D-s project, OpenSource architecture adaptation to
virtual reality research expectations,” in Blender Conference,
Amsterdam, Oct 2012.

[25] “Blender,” www.blender.org, last check 2013-05-24.

[26] “Bullet,” bulletphysics.org, last check 2013-05-24.

[27] “BlenderNetwork,” www.blendernetwork.org, last check
2013-05-24.

[28] J. Gascón, J. M. Bayona, J. M. Espadero, and M. A. Otaduy,
“BlenderCAVE: Easy VR authoring for multi-screen dis-
plays,” SIACG 2011: V Ibero-American Symposium in Com-
puter Graphics, 2011.

[29] M. Wright, A. Freed, and A. Momeni, “Open Sound Control:
State of the Art 2003,” in International Conference on New
Interfaces for Musical Expression, Montreal, 2003, pp. 153–
159.

[30] N. Olaiz, P. Arumí, T. Mateos, and D. Garcia, “3D-audio
with CLAM and Blender’s Game Engine,” in Linux Audio
Conference, 2009.

[31] M. F. O’dwyer, G. Potard, and I. Burnett, “A 16-speaker 3D
audio-visual display interface and control system,” in Inter-
national Conference on Auditory Display, 2004.

[32] M. Wozniewski, Z. Settel, and J. R. Cooperstock, “Au-
dioscape: A Pure Data library for management of virtual
environments and spatial audio,” in Pure Data Convention,
Montreal, 2007.



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

(a) Simple keyboard control logic brick configuration for the BGE. Here for
example the up arrow has been mapped as to move the user in the positive X
axis direction.

(b) Python script and logic bricks needed to import a scene from BGE to
BlenderCAVE. The blender_cave.run() command execution is enough to
import a scene from Blender to BlenderCAVE.

Figure 8: Blender logic examples.

[33] “audioTWIST,” tot.sat.qc.ca./logiciels_audiotwist.html, last
check 2013-05-24.

[34] “BlenderCAVE - LIMSI,” blendercave.limsi.fr, last check
2013-05-24.

[35] M. Rébillat, E. Corteel, and B. Katz, “SMART-I2 "Spatial
Multi-user Audio-visual Real-Time Interactive Interface",”
in 125th Convention of the Audio Engineering Society, 2008,
pp. 7609_1–16.

[36] “Evolutive Virtual Environment,”
www.limsi.fr/venise/EVEsystem, last check 2013-05-24.

[37] A. J. Berkhout, D. de Vries, and P. Vogel, “Acoustic control
by wave field synthesis,” The Journal of the Acoustical Soci-
ety of America, vol. 93, p. 2764, 1993.

[38] M. Noisternig, B. F. Katz, S. Siltanen, and L. Savioja,
“Framework for real-time auralization in architectural acous-
tics,” Acta Acustica United with Acustica, vol. 94, no. 6, pp.
1000–1015, 2008.

[39] “X-emitter,” solarlune-gameup.blogspot.fr/search/label/X-
Emitter, last check 2013-05-24.

Hide-and-seek game creation
We describe here the step-by-step creation of a VR scene in

BlenderCAVE. Using classic first person controls (keyboard for
motion, mouse for orientation), the first user is to find an object
hidden in the scene. It will be auralized by a second user equipped
with a microphone through binaural rendering in both users head-
sets, to which we superposed an ambisonic rendered ambiance to
improve immersion and hinder the localization task. We chose
keyboard/mouse control, not really CAVE like, to simplify the im-
plementation description.

The first step is to edit scene objects (meshes) and configure
the keyboard/mouse controls to be used in the BGE. While not
straightforward for beginners, landscape and python control scripts
can be quickly downloaded from one of the numerous Blender ma-
terial repositories on the Internet. Keyboard motion may be easily
implemented with the BGE logic bricks, as seen in Figure 8(a). A

(a) Hide-and-Seek Game reduced landscape mesh.

(b) BlenderCAVE Hide-and-Seek Game displayed in the EVE environ-
ment.

Figure 9: Hide-and-Seek Game.

Target object is added and placed away from User 1 starting point,
illustrated in the landscape of Figure 9(a).

Once the scene has been checked in the BGE, the python script
and logic bricks of Figure 8(b) are added to display the scene in
our CAVE. Events’ audio rendering is implemented in a simplified
processor script (we skipped the set user position method descrip-
tion) shown in Figure 10. Once the remote SRE is launched, the
game is ready to start (Figure 9(b)).



The 19th International Conference on Auditory Display (ICAD-2013) July 6–10, 2013, Lodz, Poland

Figure 10: Audio rendering implementation based on the Blender-
CAVE getOSC() module. This python script is issued from the
processor.py script.


